Particle learning of Gaussian process models for sequential design and optimization
نویسندگان
چکیده
We develop a simulation-based method for the online updating of Gaussian process regression and classification models. Our method exploits sequential Monte Carlo to produce a thrifty sequential design algorithm, in terms of computational speed, compared to the established MCMC alternative. The latter is less ideal for sequential design since it must be restarted and iterated to convergence with the inclusion of each new design point. We illustrate some attractive ensemble aspects of our SMC approach, and how active learning heuristics may be implemented via particles to optimize a noisy function or to explore classification boundaries online.
منابع مشابه
Development of PSPO Simulation Optimization Algorithm
In this article a new algorithm is developed for optimizing computationally expensive simulation models. The optimization algorithm is developed for continues unconstrained single output simulation models. The algorithm is developed using two simulation optimization routines. We employed the nested partitioning (NP) routine for concentrating the search efforts in the regions which are most like...
متن کاملDiscrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)
Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...
متن کاملBiomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected ...
متن کاملApplication of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods...
متن کاملApplication of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009